Odwrócona osmoza technologia i historia (ang. Reverse Osmosis)- RO

Opublikowano w 07-05-2015

Odwróconą osmozę stosuje się do separacji związków małocząsteczkowych (sole nieorganiczne, małocząsteczkowe związki organiczne) od rozpuszczalnika. Konieczne jest stosowanie wyższych ciśnień trans-membranowych niż w przypadku ultra i mikro-filtracji, ponieważ związki małocząsteczkowe charakteryzują się wyższymi ciśnieniami osmotycznymi. Ciśnienia te zależą od stężenia znaczniej, niż w przypadku roztworów związków wielkocząsteczkowych.

U podstaw procesu odwróconej osmozy leży zjawisko osmozy naturalnej. W układzie, gdzie membrana rozdziela roztwór od rozpuszczalnika lub dwa roztwory o różnym stężeniu, następuje samorzutne przenikanie rozpuszczalnika przez membranę w kierunku roztworu o większym stężeniu. Ciśnienie zewnętrzne równoważące przepływ osmotyczny zwane jest ciśnieniem osmotycznym, i jest charakterystyczny dla danego roztworu.

Jeżeli po stronie roztworu wytworzy się ciśnienie hydrostatyczne przewyższające ciśnienie osmotyczne, rozpuszczalnik będzie przenikał z roztworu bardziej stężonego do rozcieńczonego, a więc w kierunku odwrotnym niż w procesie osmozy naturalnej. Dla procesu tego zaproponowano nazwę odwrócona osmoza. Równolegle stosowana jest czasem nazwa hiperfiltracja.

Odwrócona osmoza pozwala oddzielić rozpuszczalnik (wodę) od substancji rozpuszczonych nawet o stosunkowo niskiej masie cząsteczkowej, np. sole i cukry. Mechanizm rozdziału ma charakter dyfuzyjny. Ciśnienia robocze stosowane w procesie odwróconej osmozy ze względu na wysoką wartość ciśnień osmotycznych rozdzielanych roztworów są wysokie i wynoszą od 1 do 10 MPa.

Odwrócona osmoza została po raz pierwszy zastosowana w 1953 roku do odsalania wody morskiej. Wprowadzenie jej do przemysłu nastąpiło dopiero w latach sześćdziesiątych po opracowaniu przez Loeb'a i Sourirajana technologii wytwarzania na skalę przemysłową wysokowydajnych, a jednocześnie selektywnych membran asymetrycznych. Jest to proces rozdziału składników o małej masie cząsteczkowej M<300. Średnice rozdzielanych cząstek i cząsteczek mogą wynosić od kilku do kilkunastu angstremów. Cząstki i cząsteczki zatrzymywane przez membranę prowadzą do wzrostu stężenia po tej stronie membrany, co z kolei wywołuje wzrost ciśnienia osmotycznego, które niweluje siłę napędową procesu. Przepływ filtratu (permeatu) jest możliwy wówczas, gdy ciśnienie zewnętrzne przekroczy ciśnienie osmotyczne.

W przeciwieństwie do tradycyjnego filtra, odwrócona osmoza może rozdzielać składniki roztworów do zakresu rozmiaru molekularnego, co sprawia, że jest ona konkurencyjna w stosunku do innych metod oczyszczania wody. Istnieje możliwość łączenia jednostek membranowych z klasycznymi procesami inżynierii chemicznej, np. wymianą jonową, destylacją, krystalizacją.

Odwrócona osmoza jest procesem wysokociśnieniowym, a wielkość ciśnienia zewnętrznego, w zależności od rodzaju membrany i warunków prowadzenia procesu, zmieniać się może w granicach od 1,5 do ok. 10 MPa.
Procesy RO można podzielić zasadniczo na trzy grupy:

  • osmoza wysokociśnieniowa (6 – 10 MPa) stosowana do odsalania wody morskiej, 
  • osmoza niskociśnieniowa (1,5 – 4,5 MPa) służąca do odsalania mniej zasolonych wód odpadowych, 
  • nanofiltracja (0,3 – 3,0 MPa).

Pierwsze dwie techniki pozwalają separować sole lub małocząsteczkowe związki organiczne z roztworów ze skutecznością rzędu 95 do 99%.

DO GÓRY